Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Tissue Eng Part C Methods ; 30(4): 159-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368556

RESUMO

Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support in vivo. However, few preclinical models can simulate in vivo human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of in vivo osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. De novo bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.


Assuntos
Substitutos Ósseos , Periósteo , Ovinos , Animais , Humanos , Periósteo/patologia , Periósteo/fisiologia , Periósteo/cirurgia , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Materiais Biocompatíveis , Reatores Biológicos
2.
Semin Musculoskelet Radiol ; 27(4): 421-431, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37748465

RESUMO

The periosteum is a membrane that covers almost all bones in the body. It is a living structure but attracts little attention unless it reacts excessively. We highlight the important points in the anatomy, histology, and physiology of the periosteum, the stimuli and various aspects of periosteal reaction, and the main conditions underlying periosteal reaction.


Assuntos
Diagnóstico por Imagem , Periósteo , Humanos , Periósteo/anatomia & histologia , Periósteo/fisiologia
3.
J Exp Zool A Ecol Integr Physiol ; 339(10): 1017-1025, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37635631

RESUMO

Antlerogenic periosteum (AP) is the unique tissue type that gives rise to antlers and their antecedents, the pedicles. Deer antlers are the only mammalian organ that can fully regenerate. Efficient investigation of the mechanism of antler formation and regeneration requires year-round availability of AP, but naturally AP can only be obtained less than two months in a year. In the present study we took the cryopreservation approach to store the sampled AP in ultra-low temperature to overcome the limited period of availability. First, we evaluated the suitability of vitrification and cell cryopreservation method for cryopreservation of AP, cell migration status of the AP tissue pieces confirmed that vitrification methods did not work as the only few AP cells migrated out, whereas migrated cell numbers in the cell-cryo group (conventional method for cryopreservation of cells) were comparable to those of the fresh AP group. To further evaluate the suitability of cell cryopreservation method for AP tissue, AP samples were allocated into three groups based on the different ratios of cryopreservation reagents (dimethyl sulfoxide [DMSO], dulbecco's modified eagle's medium [DMEM] and fetal bovine serum [FBS]): AP-Cell-1 (1:4:5), AP-Cell-2 (1:2:7) and AP-Cell-3 (1:0:9), the results showed that migrated cell number were again comparable to the fresh AP group. There was no significant difference between the cell-cryo groups (AP-Cell-1 and AP-Cell-3) and the fresh group: (1) in viability (p > 0.05) through trypan blue staining (91.2%, 90.8%, and 92.4%, respectively); (2) in the attachment day, and all on Day 5 after cell seeding; (3) in cell proliferation rate (p > 0.05) through Cell Counting kit 8 (CCK8) measurement; and (4) in number of the formed clones (Clonogenicity). In the in vivo trials, there was no visible difference in temporal differentiation sequence of the formed xenogeneic antlers between the fresh AP and cryopreserved AP (AP-Cell-1 and AP-Cell-3). Overall, we found that the AP tissue was well cryopreserved just using the conventional freezing and thawing methods for cells, and their viability and developmental potential comparable to the fresh AP both in vitro and in vivo. The long-term preservation of the AP tissue is of great significance for the study of the periosteum biology in general and the mechanism underlying xenogeneic generation and regeneration of deer antlers in specific.


Assuntos
Chifres de Veado , Cervos , Animais , Cervos/fisiologia , Periósteo/fisiologia , Regeneração , Criopreservação/veterinária , Chifres de Veado/fisiologia
4.
Small Methods ; 7(10): e2300370, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356079

RESUMO

Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis. Furthermore, in a rat cranial defect model, HABP/Sr-PLA was demonstrated to significantly promote the formation of blood vessels and new bone under mild 808 nm photothermal stimulation (42.8 °C), and the highest protein expression of CD31 and OPN was five times higher than that of the control group and other groups. Therefore, the proposed seamless microcrack-filled bionic periosteum patch is a promising clinical strategy for promoting bone repair.


Assuntos
Biônica , Periósteo , Ratos , Animais , Periósteo/fisiologia , Osteogênese , Regeneração Óssea , Poliésteres
5.
ACS Appl Mater Interfaces ; 15(9): 12273-12293, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890691

RESUMO

Ideal periosteum materials are required to participate in a sequence of bone repair-related physiological events, including the initial immune response, endogenous stem cell recruitment, angiogenesis, and osteogenesis. However, conventional tissue-engineered periosteal materials have difficulty achieving these functions by simply mimicking the periosteum via structural design or by loading exogenous stem cells, cytokines, or growth factors. Herein, we present a novel biomimetic periosteum preparation strategy to comprehensively enhance the bone regeneration effect using functionalized piezoelectric materials. The resulting biomimetic periosteum possessing an excellent piezoelectric effect and improved physicochemical properties was prepared using a biocompatible and biodegradable poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) polymer matrix, antioxidized polydopamine-modified hydroxyapatite (PHA), and barium titanate (PBT), which were further incorporated into the polymer matrix to fabricate a multifunctional piezoelectric periosteum by a simple one-step spin-coating method. The addition of PHA and PBT dramatically enhanced the physicochemical properties and biological functions of the piezoelectric periosteum, resulting in improved surface hydrophilicity and roughness, enhanced mechanical performance, tunable degradation behavior, and stable and desired endogenous electrical stimulations, which is conducive to accelerating bone regeneration. Benefiting from endogenous piezoelectric stimulation and bioactive components, the as-fabricated biomimetic periosteum demonstrated favorable biocompatibility, osteogenic activity, and immunomodulatory functions in vitro, which not only promoted adhesion, proliferation, and spreading as well as osteogenesis of mesenchymal stem cells (MSCs) but also effectively induced M2 macrophage polarization, thereby suppressing reactive oxygen species (ROS)-induced inflammatory reactions. Through in vivo experiments, the biomimetic periosteum with endogenous piezoelectric stimulation synergistically accelerated the formation of new bone in a rat critical-sized cranial defect model. The whole defect was almost completely covered by new bone at 8 weeks post treatment, with a thickness close to that of the host bone. Collectively, with its favorable immunomodulatory and osteogenic properties, the biomimetic periosteum developed here represents a novel method to rapidly regenerate bone tissue using piezoelectric stimulation.


Assuntos
Osteogênese , Periósteo , Ratos , Animais , Periósteo/fisiologia , Regeneração Óssea , Engenharia Tecidual , Durapatita/farmacologia , Alicerces Teciduais/química
6.
ACS Nano ; 16(11): 18071-18089, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36108267

RESUMO

Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.


Assuntos
Nanopartículas , Osteogênese , Óxido de Magnésio/farmacologia , Regeneração Óssea , Magnésio/farmacologia , Periósteo/fisiologia , Periósteo/transplante , Osso Cortical , Bandagens
7.
ACS Appl Mater Interfaces ; 14(12): 14103-14119, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306805

RESUMO

The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.


Assuntos
Cério , Periósteo , Animais , Biomimética , Regeneração Óssea , Casca de Ovo , Camundongos , Osteogênese , Óxidos , Periósteo/fisiologia , Engenharia Tecidual
8.
ACS Appl Mater Interfaces ; 13(27): 32226-32241, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210116

RESUMO

The touchstone for bone replacing or anchoring trauma implants, besides resorption, includes functional ankylosis at a fixation point and replacement by viable functional neo-bone tissues. These parameters redefined the concept of "resorbability" as "bioresorbability." Interference screws are the most commonly used resorbable anchoring implants for anterior cruciate ligament (ACL) reconstruction (surgery). Over the years, the bioresorbable screw fixation armamentarium has amplified countless choices, but instability and postimplantation complications have raised concerns about its reliability and efficacy. Owing to this interest, in this work, bioactive glass fiber-reinforced plastic (BGFP) composites with (BGFPnb5) and without (BGFP5) niobicoxide composing multiplexed network modifiers are reported as bioresorbable bone-anchoring substitutes. These synergistically designed composites have a fabricated structure of continuous, unidirectional BG fibers reinforced in an epoxy resin matrix using "melt-drawing and microfabrication" technology. The BGFP microarchitecture is comprised of multiplexed oxide components that influence bioactive response in a distinctive lophelia atoll-like apatite formation. Furthermore, it assists in the proliferation, adherence, and migration of bone marrow-derived mesenchymal stem cells. It also exhibits superior physicochemical characteristics such as surface roughness, hydrophilic exposure, distinctive flexural strength, and bioresorption. Thus, it induces restorative bone osseointegration and osteoconduction and actuates periosteum function. In addition, the BGFP influences the reduction of DH5-α Escherichia coli in suspension culture, demonstrating potential antibacterial efficacy. In conclusion, the BGFP composite therapeutic efficacy demonstrates distinctive material characteristics aiding in bone regeneration and restoration that could serve as a pioneer in orthopedic regenerative medicine.


Assuntos
Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Vidro/química , Periósteo/efeitos dos fármacos , Plásticos/química , Regeneração Óssea/efeitos dos fármacos , Cristalografia por Raios X , Teste de Materiais , Osseointegração/efeitos dos fármacos , Periósteo/fisiologia , Próteses e Implantes
9.
J Exp Zool A Ecol Integr Physiol ; 335(4): 386-395, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793094

RESUMO

Deer antlers are the only mammalian organs that can fully regenerate, which relies on pedicle periosteum (PP). Interestingly during the growing phase, antlers themselves can regenerate partially lost antler tissue. However, what tissue type in the growing antlers fulfills this role is not known. Following antler removal during the growing phase, a "second" antler regenerates from the stump. In this study, the "second" antler growing from the cut antler base (AB) was examined in both red and sika deer. The results showed that all regenerating antlers were formed from the peripheral edge of the AB, where the antler periosteum (AnP) is located. The growth center showed a clear demarcation from the AB bone in red deer. Therefore, it is highly likely that AnP is the tissue that possesses the potential. Factors that might affect this potential were explored and the main factor was found to be AB calcification, which was controlled by rising androgens. Thus, the ultimate antler regeneration potential of the AnP was assessed through castration and repeated antler removal. The results demonstrated that the regeneration potential of AnP was somewhat limited and inferior to that of the PP. The ability of AnP to achieve partial regeneration may be evolutionarily conserved, as the regeneration of partially lost antlers within the season is secured; whereas, with PP, a new set of antlers in the next season is guaranteed. This two-level mechanism may signify how evolutionarily important it is for deer to possess reasonably intact antlers.


Assuntos
Chifres de Veado/fisiologia , Cervos/fisiologia , Periósteo/fisiologia , Regeneração/fisiologia , Envelhecimento , Animais , Masculino , Orquiectomia , Fatores de Tempo
10.
Elife ; 102021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560227

RESUMO

The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1+ cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that alpha smooth muscle actin (αSMA) identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched with skeletal progenitor cells, and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.


Assuntos
Consolidação da Fratura , Osteogênese , Periósteo/fisiologia , Animais , Feminino , Masculino , Camundongos
11.
ScientificWorldJournal ; 2020: 8846285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293901

RESUMO

BACKGROUND: Creating a secluded large space using guided bone regeneration (GBR) is a novel osteogenesis technique used in the prevention of premature membrane exposure complications. However, this technique is not considered clinically feasible. OBJECTIVES: This study aimed to compare the outcome of the insertion of two novel GBR devices in a rabbit calvarial model in terms of mode of action, simplicity, and amount of new space and bone gained. MATERIALS AND METHODS: The expansible GBR (EGBR) device, composed mainly of a titanium plate, silicone membrane, and activation screw, was inserted beneath the periosteum in the calvarial area of eight rabbits. The smart GBR (SGBR) device, composed of silicone sheets and Nitinol strips, were inserted beneath the periosteum in the calvarial area of another 10 rabbits. Half of each group was sacrificed 2 months after surgery, and the other half was sacrificed after 4 months. RESULTS: Histological and microradiographical analysis showed that, at 2 months, the EGBR device achieved a mean space gain of 207.2 mm3, a mean bone volume of 68.2 mm3, and a mean maximum bone height of 1.9 mm. Values for the same parameters at 4 months were 202.1 mm3, 70.3 mm3, and 1.6 mm, respectively. The SGBR device had significantly higher (P < 0.05) mean space gain (238.2 mm3; 239.5 mm3), bone volume (112.9 mm3, 107.7 mm3), and bone height (2.7 mm; 2.6 mm) than the EGBR device at 2 and 4 months, respectively. CONCLUSION: Both devices proved to be effective in augmenting bone vertically through the application of GBR and soft tissue expansion processes. However, the SGBR device was more efficient in terms of mode of action, simplicity, and amount of bone created in the new space.


Assuntos
Placas Ósseas/normas , Regeneração Óssea/fisiologia , Fixadores Internos/normas , Osteogênese/fisiologia , Crânio/fisiologia , Crânio/cirurgia , Animais , Parafusos Ósseos/normas , Masculino , Periósteo/fisiologia , Periósteo/cirurgia , Coelhos , Silício/normas , Telas Cirúrgicas/normas , Titânio/normas
12.
Cells Tissues Organs ; 209(2-3): 128-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32937633

RESUMO

Delayed-union or non-union between a host bone and a graft is problematic in clinical treatment of segmental bone defects in orthopedic cases. Based on a preliminary study of human periosteum allografts from this laboratory, the present work has extensively investigated the use of human cadaveric tissue-engineered periosteum-allograft constructs as an approach to healing such serious orthopedic surgical situations. In this current report, human cadaveric periosteum-wrapped bone allografts and counterpart controls without periosteum were implanted subcutaneously in athymic mice (nu/nu) for 10, 20, and, for the first time, 40 weeks. Specimens were then harvested and assessed by histological and gene expression analyses. Compared to controls, the presence of new bone formation and resorption in periosteum-allograft constructs was indicated in both histology and gene expression results over 40 weeks of implantation. Of several genes also examined for the first time, RANKL and SOST expression levels increased in a statistically significant manner, data suggesting that bone formation and the presence of increasing numbers of osteocytes in bone matrices had increased with time. The tissue-engineering strategy described in this study provides a possible means of improving delayed-union or non-union at the healing sites of segmental bone defects or bone fractures. The potential of periosteum and its resident cells could thereby be utilized effectively in tissue-engineering methods and tissue regenerative medicine.


Assuntos
Aloenxertos/fisiologia , Regeneração Óssea/fisiologia , Transplante Ósseo , Periósteo/fisiologia , Medicina Regenerativa , Engenharia Tecidual/métodos , Idoso , Animais , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Mater Sci Eng C Mater Biol Appl ; 110: 110670, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204098

RESUMO

Periosteum as an important component in the construct of bone is mainly responsible for providing nourishment and regulating osteogenic differentiation. When bone defect happens, the functionality of periosteum will also be influenced, furthermore, it will finally hamper the process of bone regeneration. However, fabrication of an artificial periosteum with the capabilities in accelerating angiogenesis and osteogenesis in the defect area is still a challenge for researchers. In this study, we fabricated an organic-inorganic hybrid biomimetic periosteum by electrospinning, which can induce mineralization in situ and control the ions release for long-term in local area. Further, this system exhibited potential capabilities in promoting in vitro, which means the potentiality in accelerating bone regeneration in vivo. Calcium phosphate nanoparticles (CaPs) were fabricated by emulsion method, then CaPs were further incorporated with gelatin-methacryloyl (GelMA) by electrospinning fibers to construct the hybrid hydrogel fibers. The fibers exhibited satisfactory morphology and mechanical properties, additionally, controlled ions release could be observed for over 10 days. Further, significant mineralization was proved on the surface of hybrid fibers after 7 days and 14 days' co-incubation with simulated body fluid (SBF). Then, favorable biocompatibility of the hybrid fibers was approved by co-cultured with MC3T3-E1 cells. Finally, the hybrid fibers exhibited potential capabilities in promoting angiogenesis and osteogenesis by co-culture with HUVECs and MC3T3-E1 cells. This biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum provided a promising strategy to develop periosteum biomaterials with angiogenesis and osteogenesis capabilities.


Assuntos
Materiais Biomiméticos/farmacologia , Regeneração Óssea/fisiologia , Hidrogéis/farmacologia , Compostos Inorgânicos/farmacologia , Compostos Orgânicos/farmacologia , Periósteo/fisiologia , Engenharia Tecidual/métodos , Animais , Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Periósteo/efeitos dos fármacos
14.
J Biomed Mater Res A ; 108(1): 19-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430044

RESUMO

The objective of this study was to fabricate an acellular sheep periosteum and explore its potential application in guided bone regeneration. Sheep periosteum was collected and decellularized by a modified decellularization protocol. The effectiveness of cell removal was proved by hematoxylin and eosin and 4',6-diamidino-2-phenylindole staining, DNA quantitative test, and agarose gel electrophoresis. After decellularization, its microstructure was found to become more porous while the integrality of collagen fibers remained undamaged, and the contents of collagen and glycosaminoglycan were not decreased significantly. Biomechanical analysis showed that the elastic modulus was significantly declined, while the yield stress was not affected, probably due to the collagen integrality. In vitro study of CCK-8 assay demonstrated that the acellular periosteum not only had no toxic effect to the MC3T3-E1 cells, but benefited the cell proliferation to some degree. In vivo experiment of guided bone regeneration was performed using a rabbit cranial model. Micro-CT and histological results revealed that the acellular periosteum not only effectively prevented the ingrowth of fibrous connective tissues, but also potentially facilitated bone regeneration. In conclusion, acellular sheep periostea, with wider sources, less costs, and more convenient fabrication process, would have great potential in the employment for guided bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Regeneração Tecidual Guiada , Periósteo/fisiologia , Animais , Morte Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Masculino , Periósteo/diagnóstico por imagem , Periósteo/ultraestrutura , Coelhos , Reprodutibilidade dos Testes , Ovinos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Microtomografia por Raio-X
15.
Int J Biol Macromol ; 143: 619-632, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811849

RESUMO

The periosteum is a membrane that surrounds bones, providing essential cellular and biological components for fracture healing and bone repair. Tissue engineered scaffolds able to function as periosteum substitutes can significantly improve bone regeneration in severely injured tissues. Efforts to develop more bioactive and tunable periosteal substitutes are required to improve the success of this tissue engineering approach. In this work, a chemical modification was performed in chitosan, a polysaccharide with osteoconductive properties, by introducing phosphate groups to its structure. The phosphorylated polymer (Chp) was used to produce chitosan-xanthan-based scaffolds for periosteal tissue engineering. Porous and mechanically reinforced matrices were obtained with addition of the surfactant Kolliphor® P188 and the silicone rubber Silpuran® 2130A/B. Scaffolds properties, such as large pore sizes (850-1097 µm), micro-roughness and thickness (0.7-3.5 mm in culture medium), as well as low thrombogenicity compared to standard implantable materials, extended degradation time and negligible cytotoxicity, enable their application as periosteum substitutes. Moreover, the higher adsorption of bone morphogenetic protein mimic (cytochrome C) by Chp-based formulations suggests improved osteoinductivity of these materials, indicating that, when used in vivo, the material would be able to concentrate native BMPs and induce osteogenesis. The scaffolds produced were not toxic to adipose tissue-derived stem cells, however, cell adhesion and proliferation on the scaffolds surfaces can be still further improved. The mineralization observed on the surface of all formulations indicates that the materials studied have promising characteristics for the application in bone regeneration.


Assuntos
Quitosana/farmacologia , Osseointegração/efeitos dos fármacos , Periósteo/fisiologia , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tecido Adiposo/citologia , Adsorção , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Módulo de Elasticidade , Humanos , L-Lactato Desidrogenase/metabolismo , Muramidase/metabolismo , Osteogênese/efeitos dos fármacos , Periósteo/efeitos dos fármacos , Fosforilação , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse Mecânico , Trombose/patologia
16.
J Orthop Surg Res ; 14(1): 146, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118077

RESUMO

OBJECTIVE: The aim of this research is to investigate the effects of concentrated growth factor (CGF) on the proliferation, osteogenic differentiation, and angiogenic potential of rabbit periosteum-derived cells (PDCs) in vitro. METHODS: PDCs were isolated from the femoral and tibial periosteum of rabbits and cultured with or without CGF membranes or CGF conditioned media. Scanning electron microscopy (SEM) was used for the structural characterization. Cell Counting Kit-8 assay was used to measure cell proliferation. Alkaline phosphatase (ALP) activity of PDCs was also measured. Immunohistochemistry was used to detect the expression of CD34. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (qPCR), and Western blot were used to evaluate the secretion and expression levels of osteogenic differentiation markers (bone morphogenetic protein-2, type I collagen, osteocalcin) and angiogenesis markers (vascular endothelial growth factor, basic fibroblast growth factor) in supernatants and PDCs at days 3, 7, 14, and 21. RESULTS: The SEM analysis showed a dense three-dimensional fibrin network in CGF, and CGF membranes were covered by PDCs with elongated or polygonal morphological features. Compared with the control group, CGF significantly promoted the proliferation of PDCs during the experimental period (p < 0.05). Immunohistochemistry revealed that PDCs were dispersedly distributed among the CGF substrates, and CD34-positive cells were also present. Moreover, CGF significantly increased the ALP activity and upregulated the expression and secretion of osteogenic differentiation and angiogenesis markers in PDCs at days 3, 7, 14, and 21 (p < 0.05). CONCLUSION: CGF can increase the proliferation and promote the osteogenic differentiation and angiogenic potential of PDCs in vitro. These results indicate that CGF can be used as a new therapeutic means for biotechnological and clinical applications.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neovascularização Fisiológica/fisiologia , Osteogênese/fisiologia , Periósteo/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Periósteo/citologia , Periósteo/efeitos dos fármacos , Coelhos
17.
Adv Exp Med Biol ; 1132: 43-47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037623

RESUMO

Periostin is specifically expressed in periosteum that functions in bone modeling and remodeling and bone repair, and is sensitive to mechanical stress. Thus periostin has been expected for controlling these crucial systems in bone. The results from periostin deficient mice demonstrate that periostin acts on bone remodeling though detailed mechanisms are unknown. Recent findings have revealed that periostin is essential for bone repair. In this chapter, I introduce expression and function of periostin in bone.


Assuntos
Remodelação Óssea , Moléculas de Adesão Celular/fisiologia , Periósteo/fisiologia , Animais , Camundongos
18.
Adv Exp Med Biol ; 1132: 49-61, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037624

RESUMO

Bone regeneration is an efficient regenerative process depending on the recruitment and activation of skeletal stem cells that allow cartilage and bone formation leading to fracture consolidation. Periosteum, the tissue located at the outer surface of bone is now recognized as an essential player in the bone repair process and contains skeletal stem cells with high regenerative potential. The matrix composition of the periosteum defines its roles in bone growth, in cortical bone modeling and remodeling in response to mechanical strain, and in bone repair. Periostin is a key extracellular matrix component of the periosteum involved in periosteum functions. In this chapter, we summarize the current knowledge on the bone regeneration process, the role of the periosteum and skeletal stem cells, and Periostin functions in this context. The matricellular protein Periostin has several roles through all stages of bone repair: in the early days of repair during the initial activation of stem cells within periosteum, in the active phase of cartilage and bone deposition in the facture callus, and in the final phase of bone bridging and reconstitution of the stem cell pool within periosteum.


Assuntos
Regeneração Óssea , Moléculas de Adesão Celular/fisiologia , Periósteo/fisiologia , Cartilagem/fisiologia , Humanos , Osteogênese , Células-Tronco/citologia
19.
Sci Rep ; 9(1): 5890, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971812

RESUMO

Determination of mechanical loading regimen that would induce a prescribed new bone formation rate and its site-specific distribution, may be desirable to treat some orthopaedic conditions such as bone loss due to muscle disuse, e.g. because of space flight, bed-rest, osteopenia etc. Site-specific new bone formation has been determined earlier experimentally and numerically for a given loading regimen; however these models are mostly non-invertible, which means that they cannot be easily inverted to predict loading parameters for a desired new bone formation. The present work proposes an invertible model of bone remodeling, which can predict loading parameters such as peak strain, or magnitude and direction of periodic forces for a desired or prescribed site-specific mineral apposition rate (MAR), and vice versa. This fast, mathematical model has a potential to be developed into an important aid for orthopaedic surgeons for prescribing exercise or exogenous loading of bone to treat bone-loss due to muscle disuse.


Assuntos
Osso Cortical/fisiologia , Modelos Teóricos , Estresse Mecânico , Animais , Remodelação Óssea , Feminino , Camundongos , Periósteo/fisiologia
20.
Biomaterials ; 182: 279-288, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142527

RESUMO

Periosteum plays an indispensable role in bone repair and reconstruction. To recapitulate the remarkable regenerative capacity of periosteum, a biomimetic tissue-engineered periosteum (TEP) was constructed via layer-by-layer bottom-up strategy utilizing polycaprolactone (PCL), collagen, and nano-hydroxyapatite composite nanofiber sheets seeded with bone marrow stromal cells (BMSCs). When combined with a structural bone allograft to repair a 4 mm segmental bone defect created in the mouse femur, TEP restored donor-site periosteal bone formation, reversing the poor biomechanics of bone allograft healing at 6 weeks post-implantation. Further histologic analyses showed that TEP recapitulated the entire periosteal bone repair process, as evidenced by donor-dependent formation of bone and cartilage, induction of distinct CD31high type H endothelium, reconstitution of bone marrow and remodeling of bone allografts. Compared to nanofiber sheets without BMSC seeding, TEP eliminated the fibrotic tissue capsule elicited by nanofiber sheets, leading to a marked improvement of osseointegration at the compromised periosteal site. Taken together, our study demonstrated a novel layer-by-layer engineering platform for construction of a versatile biomimetic periosteum, enabling further assembly of a multi-component and multifunctional periosteum replacement for bone defect repair and reconstruction.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Periósteo/fisiologia , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Biomimética , Colágeno/química , Fêmur/citologia , Fêmur/lesões , Fêmur/fisiologia , Fêmur/ultraestrutura , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanofibras/ultraestrutura , Periósteo/citologia , Poliésteres/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA